„Nichts ist getan, wenn noch etwas zu tun übrig ist.“
Gauß: Werke, Bd. 5 (nach Worbs 1955, S. 43)
Tatsächlich aus Lukans Bürgerkrieg oder Pharsalia II, 657: "nil actum credens cum quid superesset agendum"
Fälschlich zugeschrieben
Geburtstag: 30. April 1777
Todesdatum: 23. Februar 1855
Johann Carl Friedrich Gauß war ein deutscher Mathematiker, Statistiker, Astronom, Geodät und Physiker.
Wegen seiner überragenden wissenschaftlichen Leistungen galt er bereits zu seinen Lebzeiten als Princeps Mathematicorum .
Mit 18 Jahren entwickelte Gauß die Grundlagen der modernen Ausgleichungsrechnung und der mathematischen Statistik , mit der er 1801 die Wiederentdeckung des ersten Asteroiden Ceres ermöglichte. Auf Gauß gehen die nichteuklidische Geometrie, zahlreiche mathematische Funktionen, Integralsätze, die Normalverteilung, erste Lösungen für elliptische Integrale und die gaußsche Krümmung zurück. 1807 wurde er zum Universitätsprofessor und Sternwartendirektor in Göttingen berufen und später mit der Landesvermessung des Königreichs Hannover betraut. Neben der Zahlen- und der Potentialtheorie erforschte er u. a. das Erdmagnetfeld.
Bereits 1856 ließ der König von Hannover Gedenkmedaillen mit dem Bild von Gauß und der Inschrift “Mathematicorum Principi” prägen. Da Gauß nur einen Bruchteil seiner Entdeckungen veröffentlichte, erschloss sich der Nachwelt die Tiefgründigkeit und Reichweite seines Werks in vollem Umfang erst, als 1898 sein Tagebuch entdeckt und ausgewertet wurde, und als der Nachlass bekannt wurde.
Nach Gauß sind viele mathematisch-physikalische Phänomene und Lösungen benannt, mehrere Vermessungs- und Aussichtstürme, zahlreiche Schulen, außerdem Forschungszentren und wissenschaftliche Ehrungen wie die Carl-Friedrich-Gauß-Medaille der Braunschweigischen Akademie und die festliche Gauß-Vorlesung, die jedes Semester an einer deutschen Hochschule stattfindet. Wikipedia
„Nichts ist getan, wenn noch etwas zu tun übrig ist.“
Gauß: Werke, Bd. 5 (nach Worbs 1955, S. 43)
Tatsächlich aus Lukans Bürgerkrieg oder Pharsalia II, 657: "nil actum credens cum quid superesset agendum"
Fälschlich zugeschrieben
zitiert in: Wolfgang Sartorius von Waltershausen, Gauss zum Gedächtiniss, Leipzig 1856, S. 101 f. books. google
Schreiben Gauß' an Heinrich Christian Schumacher, Göttingen, 2. 4. 1833. In Christian August Friedrich Peters (Hrsg.): Briefwechsel zwischen C. F. Gauss und H. C. Schumacher Band 2, Gustav Esch, Altona 1860, S. 328 books.google https://books.google.de/books?id=szEDAAAAQAAJ&pg=PA328&dq=langsam
Dem entspricht Gauß' Wahlspruch, den Wilhelm Olbers in seinem Brief an Gauß vom 28. April 1830 erwähnt: "Es ist erfreulich, dass von Ihrem Wahlspruch „Pauca sed matura“ [„Weniges, aber Reifes“] doch nur das letzte eigentlich Anwendung findet, und der unvergleichliche Baum doch auch viele Früchte trägt." - https://gauss.adw-goe.de/handle/gauss/4635
Gauß selbst schrieb dazu am 20. Juni 1836 an Schumacher: "[...] bemerken Sie zugleich, dass ich nicht ohne Ursache pauca sed matura zu meinem Wahlspruch für alles zu veröffentlichende gemacht habe." - Christian August Friedrich Peters (Hrsg.): Briefwechsel zwischen C. F. Gauss und H. C. Schumacher Band 3, Gustav Esch, Altona 1861, S. 69 books.google https://books.google.de/books?hl=de&id=Jns_AQAAIAAJ&pg=PA69&dq=pauca. Schumacher antwortete am 24. Juni 1836: "Ich hatte einmal vor, Ihnen ein Siegel stechen zu lassen, mit Ihrem Baume mit wenigen Früchten, und der Umschrift pauca sed matura, aber darunter in der Exergue N.P.I., nemlich Ludwig's des 14ten Symbolum Nec pluribus impar. Indessen fürchtete ich, Sie würden es nicht gebrauchen." - ibidem S. 75 books.google https://books.google.de/books?id=Jns_AQAAIAAJ&pg=PA75&dq=pauca
Ähnlich Blaise Pascal: "meine Briefe pflegten nicht [...]"
Schreiben Gauss an Wolfgang Bolyai, Göttingen, 2. 9. 1808. In Franz Schmidt, Paul Stäckel (Hrsg.): Briefwechsel zwischen Carl Friedrich Gauss und Wolfgang Bolyai, B. G. Teubner, Leipzig 1899, S. 94 (bei der University of Michigan: http://name.umdl.umich.edu/AAS7555.0001.001; im Internet-Archiv: http://www.archive.org/details/briefwechselzwi00gausgoog)
Friedrich Wilhelm Kistermann: Die Rechentechnik um 1600 und Wilhelm Schickards Rechenmaschine. Dieser Ausspruch stammt vermutlich von dem Physiker Wilhelm Weber, einem Freund von C.F. Gauß, vgl. S. 248 books.google https://books.google.de/books?id=xcNiR4i07OwC&pg=PA248&dq=zugeschriebener
Fälschlich zugeschrieben
überliefert in Wolfgang Sartorius von Waltershausen, Gauss zum Gedächtniss, Verlag von S. Hirzel, Leipzig 1856, S.79, books.google http://books.google.de/books?id=h_Q5AAAAcAAJ&pg=PA79
Original : "Die Mathematik hielt Gauss um seine eigenen Worte zu gebrauchen, für die Königin der Wissenschaften und die Arithmetik für die Königin der Mathematik."
Zugeschrieben
Wolfgang Sartorius von Waltershausen, Gauss zum Gedächtniss, Leipzig 1856, S. 101 f. books.google https://books.google.de/books?id=h_Q5AAAAcAAJ&pg=PA101
An Franz Adolf Taurinus, Göttingen, 8. November 1824. Zitiert nach: Carl Friedrich Gauss Werke, Achter Band, Springer, Wiesbaden 1900, S. 187, books.google.de https://books.google.de/books?id=JabNBgAAQBAJ&pg=PA187&dq=Aber+mir+deucht,+wir+wissen,+trotz+der+nichtssagenden+Wort-Weisheit+der+Metaphysiker+eigentlich+zu+wenig+oder+gar+nichts+%C3%BCber+das+wahre+Wesen+des+Raum
auch verkürzt zu: "Man darf nicht das, was uns unwahrscheinlich und unnatürlich erscheint, mit dem verwechseln, was absolut unmöglich ist." etwa in: Albrecht Beutelspacher, "In Mathe war ich immer schlecht...", Vieweg, 4. Auflage, 2008, S. 106 , books.google.de https://books.google.de/books?id=NeJeDwAAQBAJ&pg=PA106&dq=%22Man+darf+nicht+das,+was+uns+unwahrscheinlich+und+unnat%C3%BCrlich+erscheint,+mit+dem+verwechseln,+was+absolut+unm%C3%B6glich+ist.%22
An Wilhelm Olbers, Braunschweig, 3. September 1805. In: Carl Friedrich Gauss Werke, Zehnten Bandes Erste Abteilung, Hrsg. Königliche Gesellschaft der Wissenschaften zu Göttingen, B. G. Teubner, Leibzig 1917, S. 25, GDZ https://gdz.sub.uni-goettingen.de/id/PPN236018647, der Inhalt bezieht sich auf die Arbeit mit Gaußschen Summen
An Wolfgang Bolyai, Göttingen, 2. September 1808. In: Briefwechsel zwischen Carl Friedrich Gauss und Wolfgang Bolyai, Hrsg. Franz Schmidt und Paul Stäckel, B. G. Teubner, Leipzig 1899, S. 94,
An Heinrich Christian Schumacher, Göttingen, 15. Mai 1843. In: Carl Friedrich Gauss Werke, Achter Band, Hrsg. Königliche Gesellschaft der Wissenschaften Göttingen, B. G. Teubner, Leipzig 1900, S. 298, GDZ https://gdz.sub.uni-goettingen.de/id/PPN236010751
An Friedrich Wilhelm Bessel, Göttingen, 9. April 1830. In: Briefwechsel zwischen Gauss und Bessel, Verlag von Wilhelm Engelmann, Leipzig 1880, S. 497,
Theoria motus corporum coelestium in sectionibus conicis solem ambientum (1809) Tr. Charles Henry Davis as Theory of the Motion of the Heavenly Bodies moving about the Sun in Conic Sections http://books.google.com/books?id=cspWAAAAMAAJ& (1857)
Kontext: The principle that the sum of the squares of the differences between the observed and computed quantities must be a minimum may, in the following manner, be considered independently of the calculus of probabilities. When the number of unknown quantities is equal to the number of the observed quantities depending on them, the former may be so determined as exactly to satisfy the latter. But when the number of the former is less than that of the latter, an absolutely exact agreement cannot be obtained, unless the observations possess absolute accuracy. In this case care must be taken to establish the best possible agreement, or to diminish as far as practicable the differences. This idea, however, from its nature, involves something vague. For, although a system of values for the unknown quantities which makes all the differences respectively less than another system, is without doubt to be preferred to the latter, still the choice between two systems, one of which presents a better agreement in some observations, the other in others, is left in a measure to our judgment, and innumerable different principles can be proposed by which the former condition is satisfied. Denoting the differences between observation and calculation by A, A’, A’’, etc., the first condition will be satisfied not only if AA + A’ A’ + A’’ A’’ + etc., is a minimum (which is our principle) but also if A4 + A’4 + A’’4 + etc., or A6 + A’6 + A’’6 + etc., or in general, if the sum of any of the powers with an even exponent becomes a minimum. But of all these principles ours is the most simple; by the others we should be led into the most complicated calculations.
Letter to Farkas Bolyai (2 September 1808)
Kontext: It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment. [Wahrlich es ist nicht das Wissen, sondern das Lernen, nicht das Besitzen sondern das Erwerben, nicht das Da-Seyn, sondern das Hinkommen, was den grössten Genuss gewährt. ] When I have clarified and exhausted a subject, then I turn away from it, in order to go into darkness again. The never-satisfied man is so strange; if he has completed a structure, then it is not in order to dwell in it peacefully, but in order to begin another. I imagine the world conqueror must feel thus, who, after one kingdom is scarcely conquered, stretches out his arms for others.
"Gauss's Abstract of the Disquisitiones Generales circa Superficies Curvas presented to the Royal Society of Gottingen" (1827) Tr. James Caddall Morehead & Adam Miller Hiltebeitel in General Investigations of Curved Surfaces of 1827 and 1825 http://books.google.com/books?id=SYJsAAAAMAAJ& (1902)
Kontext: In researches in which an infinity of directions of straight lines in space is concerned, it is advantageous to represent these directions by means of those points upon a fixed sphere, which are the end points of the radii drawn parallel to the lines. The centre and the radius of this auxiliary sphere are here quite arbitrary. The radius may be taken equal to unity. This procedure agrees fundamentally with that which is constantly employed in astronomy, where all directions are referred to a fictitious celestial sphere of infinite radius. Spherical trigonometry and certain other theorems, to which the author has added a new one of frequent application, then serve for the solution of the problems which the comparison of the various directions involved can present.
Theoria motus corporum coelestium in sectionibus conicis solem ambientum (1809) Tr. Charles Henry Davis as Theory of the Motion of the Heavenly Bodies moving about the Sun in Conic Sections http://books.google.com/books?id=cspWAAAAMAAJ& (1857)
Kontext: The principle that the sum of the squares of the differences between the observed and computed quantities must be a minimum may, in the following manner, be considered independently of the calculus of probabilities. When the number of unknown quantities is equal to the number of the observed quantities depending on them, the former may be so determined as exactly to satisfy the latter. But when the number of the former is less than that of the latter, an absolutely exact agreement cannot be obtained, unless the observations possess absolute accuracy. In this case care must be taken to establish the best possible agreement, or to diminish as far as practicable the differences. This idea, however, from its nature, involves something vague. For, although a system of values for the unknown quantities which makes all the differences respectively less than another system, is without doubt to be preferred to the latter, still the choice between two systems, one of which presents a better agreement in some observations, the other in others, is left in a measure to our judgment, and innumerable different principles can be proposed by which the former condition is satisfied. Denoting the differences between observation and calculation by A, A’, A’’, etc., the first condition will be satisfied not only if AA + A’ A’ + A’’ A’’ + etc., is a minimum (which is our principle) but also if A4 + A’4 + A’’4 + etc., or A6 + A’6 + A’’6 + etc., or in general, if the sum of any of the powers with an even exponent becomes a minimum. But of all these principles ours is the most simple; by the others we should be led into the most complicated calculations.
"Gauss's Abstract of the Disquisitiones Generales circa Superficies Curvas presented to the Royal Society of Gottingen" (1827) Tr. James Caddall Morehead & Adam Miller Hiltebeitel in General Investigations of Curved Surfaces of 1827 and 1825 http://books.google.com/books?id=SYJsAAAAMAAJ& (1902)
Kontext: In researches in which an infinity of directions of straight lines in space is concerned, it is advantageous to represent these directions by means of those points upon a fixed sphere, which are the end points of the radii drawn parallel to the lines. The centre and the radius of this auxiliary sphere are here quite arbitrary. The radius may be taken equal to unity. This procedure agrees fundamentally with that which is constantly employed in astronomy, where all directions are referred to a fictitious celestial sphere of infinite radius. Spherical trigonometry and certain other theorems, to which the author has added a new one of frequent application, then serve for the solution of the problems which the comparison of the various directions involved can present.
„The centre and the radius of this auxiliary sphere are here quite arbitrary.“
"Gauss's Abstract of the Disquisitiones Generales circa Superficies Curvas presented to the Royal Society of Gottingen" (1827) Tr. James Caddall Morehead & Adam Miller Hiltebeitel in General Investigations of Curved Surfaces of 1827 and 1825 http://books.google.com/books?id=SYJsAAAAMAAJ& (1902)
Kontext: In researches in which an infinity of directions of straight lines in space is concerned, it is advantageous to represent these directions by means of those points upon a fixed sphere, which are the end points of the radii drawn parallel to the lines. The centre and the radius of this auxiliary sphere are here quite arbitrary. The radius may be taken equal to unity. This procedure agrees fundamentally with that which is constantly employed in astronomy, where all directions are referred to a fictitious celestial sphere of infinite radius. Spherical trigonometry and certain other theorems, to which the author has added a new one of frequent application, then serve for the solution of the problems which the comparison of the various directions involved can present.
Gauss-Schumacher Briefwechsel (1862)
Kontext: It may be true, that men, who are mere mathematicians, have certain specific shortcomings, but that is not the fault of mathematics, for it is equally true of every other exclusive occupation. So there are mere philologists, mere jurists, mere soldiers, mere merchants, etc. To such idle talk it might further be added: that whenever a certain exclusive occupation is coupled with specific shortcomings, it is likewise almost certainly divorced from certain other shortcomings.
Theoria motus corporum coelestium... (1809) Tr. Charles Henry Davis as Theory of the Motion of the Heavenly Bodies moving about the Sun in Conic Sections (1857)
Kontext: The perturbations which the motions of planets suffer from the influence other planets, are so small and so slow that they only become sensible after a long interval of time; within a shorter time, or even within one or several revolutions, according to circumstances, the motion would differ so little from motion exactly described, according to the laws of Kepler, in a perfect ellipse, that observations cannot show the difference. As long as this is true, it not be worth while to undertake prematurely the computation of the perturbations, but it will be sufficient to adapt to the observations what we may call an osculating conic section: but, afterwards, when the planet has been observed for a longer time, the effect of the perturbations will show itself in such a manner, that it will no longer be possible to satisfy exactly all the observations by a purely elliptic motion; then, accordingly, a complete and permanent agreement cannot be obtained, unless the perturbations are properly connected with the elliptic motion.