Carl Friedrich Gauß Zitate

Johann Carl Friedrich Gauß war ein deutscher Mathematiker, Statistiker, Astronom, Geodät und Physiker.

Wegen seiner überragenden wissenschaftlichen Leistungen galt er bereits zu seinen Lebzeiten als Princeps Mathematicorum .

Mit 18 Jahren entwickelte Gauß die Grundlagen der modernen Ausgleichungsrechnung und der mathematischen Statistik , mit der er 1801 die Wiederentdeckung des ersten Asteroiden Ceres ermöglichte. Auf Gauß gehen die nichteuklidische Geometrie, zahlreiche mathematische Funktionen, Integralsätze, die Normalverteilung, erste Lösungen für elliptische Integrale und die gaußsche Krümmung zurück. 1807 wurde er zum Universitätsprofessor und Sternwartendirektor in Göttingen berufen und später mit der Landesvermessung des Königreichs Hannover betraut. Neben der Zahlen- und der Potentialtheorie erforschte er u. a. das Erdmagnetfeld.

Bereits 1856 ließ der König von Hannover Gedenkmedaillen mit dem Bild von Gauß und der Inschrift “Mathematicorum Principi” prägen. Da Gauß nur einen Bruchteil seiner Entdeckungen veröffentlichte, erschloss sich der Nachwelt die Tiefgründigkeit und Reichweite seines Werks in vollem Umfang erst, als 1898 sein Tagebuch entdeckt und ausgewertet wurde, und als der Nachlass bekannt wurde.

Nach Gauß sind viele mathematisch-physikalische Phänomene und Lösungen benannt, mehrere Vermessungs- und Aussichtstürme, zahlreiche Schulen, außerdem Forschungszentren und wissenschaftliche Ehrungen wie die Carl-Friedrich-Gauß-Medaille der Braunschweigischen Akademie und die festliche Gauß-Vorlesung, die jedes Semester an einer deutschen Hochschule stattfindet. Wikipedia  

✵ 30. April 1777 – 23. Februar 1855
Carl Friedrich Gauß Foto
Carl Friedrich Gauß: 62   Zitate 3   Gefällt mir

Carl Friedrich Gauß Berühmte Zitate

„Nichts ist getan, wenn noch etwas zu tun übrig ist.“

Gauß: Werke, Bd. 5 (nach Worbs 1955, S. 43)
Tatsächlich aus Lukans Bürgerkrieg oder Pharsalia II, 657: "nil actum credens cum quid superesset agendum"
Fälschlich zugeschrieben

„Der Mangel an mathematischer Bildung gibt sich durch nichts so auffallend zu erkennen als durch die maßlose Schärfe im Zahlenrechnen.“

Friedrich Wilhelm Kistermann: Die Rechentechnik um 1600 und Wilhelm Schickards Rechenmaschine. Dieser Ausspruch stammt vermutlich von dem Physiker Wilhelm Weber, einem Freund von C.F. Gauß, vgl. S. 248 books.google https://books.google.de/books?id=xcNiR4i07OwC&pg=PA248&dq=zugeschriebener
Fälschlich zugeschrieben

„Sie wissen, dass ich langsam schreibe, allein dies kommt hauptsächlich daher, weil ich mir nie anders gefallen kann, als wenn in kleinem Raum möglichst viel ist, und kurz zu schreiben viel mehr Zeit kostet als lang.“

Schreiben Gauß' an Heinrich Christian Schumacher, Göttingen, 2. 4. 1833. In Christian August Friedrich Peters (Hrsg.): Briefwechsel zwischen C. F. Gauss und H. C. Schumacher Band 2, Gustav Esch, Altona 1860, S. 328 books.google https://books.google.de/books?id=szEDAAAAQAAJ&pg=PA328&dq=langsam
Dem entspricht Gauß' Wahlspruch, den Wilhelm Olbers in seinem Brief an Gauß vom 28. April 1830 erwähnt: "Es ist erfreulich, dass von Ihrem Wahlspruch „Pauca sed matura“ [„Weniges, aber Reifes“] doch nur das letzte eigentlich Anwendung findet, und der unvergleichliche Baum doch auch viele Früchte trägt." - https://gauss.adw-goe.de/handle/gauss/4635
Gauß selbst schrieb dazu am 20. Juni 1836 an Schumacher: "[...] bemerken Sie zugleich, dass ich nicht ohne Ursache pauca sed matura zu meinem Wahlspruch für alles zu veröffentlichende gemacht habe." - Christian August Friedrich Peters (Hrsg.): Briefwechsel zwischen C. F. Gauss und H. C. Schumacher Band 3, Gustav Esch, Altona 1861, S. 69 books.google https://books.google.de/books?hl=de&id=Jns_AQAAIAAJ&pg=PA69&dq=pauca. Schumacher antwortete am 24. Juni 1836: "Ich hatte einmal vor, Ihnen ein Siegel stechen zu lassen, mit Ihrem Baume mit wenigen Früchten, und der Umschrift pauca sed matura, aber darunter in der Exergue N.P.I., nemlich Ludwig's des 14ten Symbolum Nec pluribus impar. Indessen fürchtete ich, Sie würden es nicht gebrauchen." - ibidem S. 75 books.google https://books.google.de/books?id=Jns_AQAAIAAJ&pg=PA75&dq=pauca
Ähnlich Blaise Pascal: "meine Briefe pflegten nicht [...]"

„Wahrlich es ist nicht das Wissen, sondern das Lernen, nicht das Besitzen, sondern das Erwerben, nicht das Da-Seyn, sondern das Hinkommen, was den grössten Genuss gewährt.“

Schreiben Gauss an Wolfgang Bolyai, Göttingen, 2. 9. 1808. In Franz Schmidt, Paul Stäckel (Hrsg.): Briefwechsel zwischen Carl Friedrich Gauss und Wolfgang Bolyai, B. G. Teubner, Leipzig 1899, S. 94 (bei der University of Michigan: http://name.umdl.umich.edu/AAS7555.0001.001; im Internet-Archiv: http://www.archive.org/details/briefwechselzwi00gausgoog)

„Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik“

überliefert in Wolfgang Sartorius von Waltershausen, Gauss zum Gedächtniss, Verlag von S. Hirzel, Leipzig 1856, S.79, books.google http://books.google.de/books?id=h_Q5AAAAcAAJ&pg=PA79
Original : "Die Mathematik hielt Gauss um seine eigenen Worte zu gebrauchen, für die Königin der Wissenschaften und die Arithmetik für die Königin der Mathematik."
Zugeschrieben

Zitate über Wissen von Carl Friedrich Gauß

„Aber mir deucht, wir wissen, trotz der nichtssagenden Wort-Weisheit der Metaphysiker eigentlich zu wenig oder gar nichts über das wahre Wesen des Raums, als dass wir etwas uns unnatürlich vorkommendes mit Absolut Unmöglich verwechseln dürfen.“

An Franz Adolf Taurinus, Göttingen, 8. November 1824. Zitiert nach: Carl Friedrich Gauss Werke, Achter Band, Springer, Wiesbaden 1900, S. 187, books.google.de https://books.google.de/books?id=JabNBgAAQBAJ&pg=PA187&dq=Aber+mir+deucht,+wir+wissen,+trotz+der+nichtssagenden+Wort-Weisheit+der+Metaphysiker+eigentlich+zu+wenig+oder+gar+nichts+%C3%BCber+das+wahre+Wesen+des+Raum
auch verkürzt zu: "Man darf nicht das, was uns unwahrscheinlich und unnatürlich erscheint, mit dem verwechseln, was absolut unmöglich ist." etwa in: Albrecht Beutelspacher, "In Mathe war ich immer schlecht...", Vieweg, 4. Auflage, 2008, S. 106 , books.google.de https://books.google.de/books?id=NeJeDwAAQBAJ&pg=PA106&dq=%22Man+darf+nicht+das,+was+uns+unwahrscheinlich+und+unnat%C3%BCrlich+erscheint,+mit+dem+verwechseln,+was+absolut+unm%C3%B6glich+ist.%22

Carl Friedrich Gauß: Zitate auf Englisch

“Spherical trigonometry and certain other theorems, to which the author has added a new one of frequent application, then serve for the solution of the problems which the comparison of the various directions involved can present.”

"Gauss's Abstract of the Disquisitiones Generales circa Superficies Curvas presented to the Royal Society of Gottingen" (1827) Tr. James Caddall Morehead & Adam Miller Hiltebeitel in General Investigations of Curved Surfaces of 1827 and 1825 http://books.google.com/books?id=SYJsAAAAMAAJ& (1902)
Kontext: In researches in which an infinity of directions of straight lines in space is concerned, it is advantageous to represent these directions by means of those points upon a fixed sphere, which are the end points of the radii drawn parallel to the lines. The centre and the radius of this auxiliary sphere are here quite arbitrary. The radius may be taken equal to unity. This procedure agrees fundamentally with that which is constantly employed in astronomy, where all directions are referred to a fictitious celestial sphere of infinite radius. Spherical trigonometry and certain other theorems, to which the author has added a new one of frequent application, then serve for the solution of the problems which the comparison of the various directions involved can present.

“The principle that the sum of the squares of the differences between the observed and computed quantities must be a minimum may, in the following manner, be considered independently of the calculus of probabilities.”

Theoria motus corporum coelestium in sectionibus conicis solem ambientum (1809) Tr. Charles Henry Davis as Theory of the Motion of the Heavenly Bodies moving about the Sun in Conic Sections http://books.google.com/books?id=cspWAAAAMAAJ& (1857)
Kontext: The principle that the sum of the squares of the differences between the observed and computed quantities must be a minimum may, in the following manner, be considered independently of the calculus of probabilities. When the number of unknown quantities is equal to the number of the observed quantities depending on them, the former may be so determined as exactly to satisfy the latter. But when the number of the former is less than that of the latter, an absolutely exact agreement cannot be obtained, unless the observations possess absolute accuracy. In this case care must be taken to establish the best possible agreement, or to diminish as far as practicable the differences. This idea, however, from its nature, involves something vague. For, although a system of values for the unknown quantities which makes all the differences respectively less than another system, is without doubt to be preferred to the latter, still the choice between two systems, one of which presents a better agreement in some observations, the other in others, is left in a measure to our judgment, and innumerable different principles can be proposed by which the former condition is satisfied. Denoting the differences between observation and calculation by A, A’, A’’, etc., the first condition will be satisfied not only if AA + A’ A’ + A’’ A’’ + etc., is a minimum (which is our principle) but also if A4 + A’4 + A’’4 + etc., or A6 + A’6 + A’’6 + etc., or in general, if the sum of any of the powers with an even exponent becomes a minimum. But of all these principles ours is the most simple; by the others we should be led into the most complicated calculations.

“In researches in which an infinity of directions of straight lines in space is concerned, it is advantageous to represent these directions by means of those points upon a fixed sphere”

"Gauss's Abstract of the Disquisitiones Generales circa Superficies Curvas presented to the Royal Society of Gottingen" (1827) Tr. James Caddall Morehead & Adam Miller Hiltebeitel in General Investigations of Curved Surfaces of 1827 and 1825 http://books.google.com/books?id=SYJsAAAAMAAJ& (1902)
Kontext: In researches in which an infinity of directions of straight lines in space is concerned, it is advantageous to represent these directions by means of those points upon a fixed sphere, which are the end points of the radii drawn parallel to the lines. The centre and the radius of this auxiliary sphere are here quite arbitrary. The radius may be taken equal to unity. This procedure agrees fundamentally with that which is constantly employed in astronomy, where all directions are referred to a fictitious celestial sphere of infinite radius. Spherical trigonometry and certain other theorems, to which the author has added a new one of frequent application, then serve for the solution of the problems which the comparison of the various directions involved can present.

“The centre and the radius of this auxiliary sphere are here quite arbitrary.”

"Gauss's Abstract of the Disquisitiones Generales circa Superficies Curvas presented to the Royal Society of Gottingen" (1827) Tr. James Caddall Morehead & Adam Miller Hiltebeitel in General Investigations of Curved Surfaces of 1827 and 1825 http://books.google.com/books?id=SYJsAAAAMAAJ& (1902)
Kontext: In researches in which an infinity of directions of straight lines in space is concerned, it is advantageous to represent these directions by means of those points upon a fixed sphere, which are the end points of the radii drawn parallel to the lines. The centre and the radius of this auxiliary sphere are here quite arbitrary. The radius may be taken equal to unity. This procedure agrees fundamentally with that which is constantly employed in astronomy, where all directions are referred to a fictitious celestial sphere of infinite radius. Spherical trigonometry and certain other theorems, to which the author has added a new one of frequent application, then serve for the solution of the problems which the comparison of the various directions involved can present.

“But of all these principles ours is the most simple; by the others we should be led into the most complicated calculations.”

Theoria motus corporum coelestium in sectionibus conicis solem ambientum (1809) Tr. Charles Henry Davis as Theory of the Motion of the Heavenly Bodies moving about the Sun in Conic Sections http://books.google.com/books?id=cspWAAAAMAAJ& (1857)
Kontext: The principle that the sum of the squares of the differences between the observed and computed quantities must be a minimum may, in the following manner, be considered independently of the calculus of probabilities. When the number of unknown quantities is equal to the number of the observed quantities depending on them, the former may be so determined as exactly to satisfy the latter. But when the number of the former is less than that of the latter, an absolutely exact agreement cannot be obtained, unless the observations possess absolute accuracy. In this case care must be taken to establish the best possible agreement, or to diminish as far as practicable the differences. This idea, however, from its nature, involves something vague. For, although a system of values for the unknown quantities which makes all the differences respectively less than another system, is without doubt to be preferred to the latter, still the choice between two systems, one of which presents a better agreement in some observations, the other in others, is left in a measure to our judgment, and innumerable different principles can be proposed by which the former condition is satisfied. Denoting the differences between observation and calculation by A, A’, A’’, etc., the first condition will be satisfied not only if AA + A’ A’ + A’’ A’’ + etc., is a minimum (which is our principle) but also if A4 + A’4 + A’’4 + etc., or A6 + A’6 + A’’6 + etc., or in general, if the sum of any of the powers with an even exponent becomes a minimum. But of all these principles ours is the most simple; by the others we should be led into the most complicated calculations.

“It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment.”

Letter to Farkas Bolyai (2 September 1808)
Kontext: It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment. [Wahrlich es ist nicht das Wissen, sondern das Lernen, nicht das Besitzen sondern das Erwerben, nicht das Da-Seyn, sondern das Hinkommen, was den grössten Genuss gewährt. ] When I have clarified and exhausted a subject, then I turn away from it, in order to go into darkness again. The never-satisfied man is so strange; if he has completed a structure, then it is not in order to dwell in it peacefully, but in order to begin another. I imagine the world conqueror must feel thus, who, after one kingdom is scarcely conquered, stretches out his arms for others.

“It may be true, that men, who are mere mathematicians, have certain specific shortcomings, but that is not the fault of mathematics, for it is equally true of every other exclusive occupation.”

Gauss-Schumacher Briefwechsel (1862)
Kontext: It may be true, that men, who are mere mathematicians, have certain specific shortcomings, but that is not the fault of mathematics, for it is equally true of every other exclusive occupation. So there are mere philologists, mere jurists, mere soldiers, mere merchants, etc. To such idle talk it might further be added: that whenever a certain exclusive occupation is coupled with specific shortcomings, it is likewise almost certainly divorced from certain other shortcomings.

“The perturbations which the motions of planets suffer from the influence other planets, are so small and so slow that they only become sensible after a long interval of time; within a shorter time”

Theoria motus corporum coelestium... (1809) Tr. Charles Henry Davis as Theory of the Motion of the Heavenly Bodies moving about the Sun in Conic Sections (1857)
Kontext: The perturbations which the motions of planets suffer from the influence other planets, are so small and so slow that they only become sensible after a long interval of time; within a shorter time, or even within one or several revolutions, according to circumstances, the motion would differ so little from motion exactly described, according to the laws of Kepler, in a perfect ellipse, that observations cannot show the difference. As long as this is true, it not be worth while to undertake prematurely the computation of the perturbations, but it will be sufficient to adapt to the observations what we may call an osculating conic section: but, afterwards, when the planet has been observed for a longer time, the effect of the perturbations will show itself in such a manner, that it will no longer be possible to satisfy exactly all the observations by a purely elliptic motion; then, accordingly, a complete and permanent agreement cannot be obtained, unless the perturbations are properly connected with the elliptic motion.

“The enchanting charms of this sublime science reveal themselves in all their beauty only to those who have the courage to go deeply into it.”

Letter to Sophie Germain (30 April 1807) ([...]; les charmes enchanteurs de cette sublime science ne se décèlent dans toute leur beauté qu'à ceux qui ont le courage de l'approfondir. Mais lorsqu'une personne de ce sexe, qui, par nos meurs [sic] et par nos préjugés, doit rencontrer infiniment plus d'obstacles et de difficultés, que les hommes, à se familiariser avec ces recherches épineuses, sait néanmoins franchir ces entraves et pénétrer ce qu'elles ont de plus caché, il faut sans doute, qu'elle ait le plus noble courage, des talents tout à fait extraordinaires, le génie superieur.)
Kontext: The enchanting charms of this sublime science reveal themselves in all their beauty only to those who have the courage to go deeply into it. But when a person of that sex, that, because of our mores and our prejudices, has to encounter infinitely more obstacles and difficulties than men in familiarizing herself with these thorny research problems, nevertheless succeeds in surmounting these obstacles and penetrating their most obscure parts, she must without doubt have the noblest courage, quite extraordinary talents and superior genius.

“All the measurements in the world do not balance one theorem by which the science of eternal truths is actually advanced.”

March 14, 1824. As quoted in Carl Friedrich Gauss: Titan of Science (1955) by Guy Waldo Dunnington. p. 360

“Ask her to wait a moment — I am almost done.”

When told, while working, that his wife was dying, as attributed in Men of Mathematics (1937) by E. T. Bell

“The study of Euler's works will remain the best school for the different fields of mathematics and nothing else can replace it.”

As quoted by Louise Grinstein, Sally I. Lipsey, Encyclopedia of Mathematics Education (2001) p. 235.

“Dark are the paths which a higher hand allows us to traverse here… let us hold fast to the faith that a finer, more sublime solution of the enigmas of earthly life will be present, will become part of us.”

In his letter to Schumacher on February 9, 1823. As quoted in Carl Friedrich Gauss: Titan of Science (1955) by Guy Waldo Dunnington. p. 361

“But in our opinion truths of this kind should be drawn from notions rather than from notations.”

Carl Friedrich Gauss buch Disquisitiones Arithmeticae

About the proof of Wilson's theorem. Disquisitiones Arithmeticae (1801) Article 76

“I confess that Fermat's Theorem as an isolated proposition has very little interest for me, because I could easily lay down a multitude of such propositions, which one could neither prove nor dispose of.”

A reply to Olbers' 1816 attempt to entice him to work on Fermat's Theorem. As quoted in The World of Mathematics (1956) Edited by J. R. Newman

“I mean the word proof not in the sense of the lawyers, who set two half proofs equal to a whole one, but in the sense of a mathematician, where ½ proof = 0, and it is demanded for proof that every doubt becomes impossible.”

In a letter to Heinrich Wilhelm Matthias Olbers (14 May 1826), defending Chevalier d'Angos against presumption of guilt (by Johann Franz Encke and others), of having falsely claimed to have discovered a comet in 1784; as quoted in Calculus Gems (1992) by George F. Simmons

“Yes! The world would be nonsense, the whole creation an absurdity without immortality.”

As quoted in Carl Friedrich Gauss: Titan of Science (1955) by Guy Waldo Dunnington. p. 357

Ähnliche Autoren

Wilhelm Conrad Röntgen Foto
Wilhelm Conrad Röntgen 5
deutscher Physiker
Auguste Comte Foto
Auguste Comte 1
französischer Mathematiker, Philosoph und Religionskritiker…
Lewis Carroll Foto
Lewis Carroll 14
britischer Schriftsteller, Mathematiker und Fotograf
Bettina von Arnim Foto
Bettina von Arnim 11
deutsche Schriftstellerin
Theodor Fontane Foto
Theodor Fontane 78
Deutscher Schriftsteller
Friedrich Von Bodenstedt Foto
Friedrich Von Bodenstedt 16
deutscher Schriftsteller
Otto Von Bismarck Foto
Otto Von Bismarck 52
deutscher Politiker, Reichskanzler
Friedrich Hebbel Foto
Friedrich Hebbel 62
deutscher Dramatiker und Lyriker
Ludwig Feuerbach Foto
Ludwig Feuerbach 29
deutscher Philosoph
Jean Paul Foto
Jean Paul 73
deutscher Schriftsteller