### „Measurements which may be made on the surface of the earth… is an example of a 2-dimensional congruence space of positive curvature K = \frac{1}{R^2}… [C]onsider… a "small circle" of radius r (measured on the surface!)… its perimeter L and area A… are clearly less than the corresponding measures 2\pi r and \pi r^2… in the Euclidean plane. …for sufficiently small r (i. e., small compared with R) these quantities on the sphere are given by 1):L = 2 \pi r (1 - \frac{Kr^2}{6} + …),

A = \pi r^2“

1 - \frac{Kr^2}{12} + …

Geometry as a Branch of Physics (1949)