„All the light which is radiated… will, after it has traveled a distance r, lie on the surface of a sphere whose area S is given by the first of the formulae (3). And since the practical procedure… in determining d is equivalent to assuming that all this light lies on the surface of a Euclidean sphere of radius d, it follows…4 \pi d^2 = S = 4 \pi r^2 (1 - \frac{K r^2}{3} + …);whence, to our approximation 4)d = r (1- \frac{K r^2}{6} + …), or
r = d (1 + \frac{K d^2}{6} + …).</center“

Geometry as a Branch of Physics (1949)

Übernommen aus Wikiquote. Letzte Aktualisierung 3. Juni 2021. Geschichte
Howard P. Robertson Foto
Howard P. Robertson
amerikanischer Mathematiker und Physiker 1903 - 1961

Ähnliche Zitate

Simon Stevin Foto
David Eugene Smith Foto
E. W. Hobson Foto
Thomas Little Heath Foto

„The discovery of Hippocrates amounted to the discovery of the fact that from the relation
(1)\frac{a}{x} = \frac{x}{y} = \frac{y}{b}it follows that(\frac{a}{x})^3 = [\frac{a}{x} \cdot \frac{x}{y} \cdot \frac{y}{b} =] \frac{a}{b}and if a = 2b, [then (\frac{a}{x})^3 = 2, and]a^3 = 2x^3.The equations (1) are equivalent [by reducing to common denominators or cross multiplication] to the three equations
(2)x^2 = ay, y^2 = bx, xy = ab[or equivalently…y = \frac{x^2}{a}, x = \frac{y^2}{b}, y = \frac{ab}{x} ]Doubling the Cube
the 2 solutions of Menaechmusand the solutions of Menaechmus described by Eutocius amount to the determination of a point as the intersection of the curves represented in a rectangular system of Cartesian coordinates by any two of the equations (2).
Let AO, BO be straight lines placed so as to form a right angle at O, and of length a, b respectively. Produce BO to x and AO to y.
The first solution now consists in drawing a parabola, with vertex O and axis Ox, such that its parameter is equal to BO or b, and a hyperbola with Ox, Oy as asymptotes such that the rectangle under the distances of any point on the curve from Ox, Oy respectively is equal to the rectangle under AO, BO i. e. to ab. If P be the point of intersection of the parabola and hyperbola, and PN, PM be drawn perpendicular to Ox, Oy, i. e. if PN, PM be denoted by y, x, the coordinates of the point P, we shall have

\begin{cases}y^2 = b. ON = b. PM = bx\\ and\\ xy = PM. PN = ab\end{cases}whence\frac{a}{x} = \frac{x}{y} = \frac{y}{b}.
In the second solution of Menaechmus we are to draw the parabola described in the first solution and also the parabola whose vertex is O, axis Oy and parameter equal to a.“

—  Thomas Little Heath British civil servant and academic 1861 - 1940

The point P where the two parabolas intersect is given by<center><math>\begin{cases}y^2 = bx\\x^2 = ay\end{cases}</math></center>whence, as before,<center><math>\frac{a}{x} = \frac{x}{y} = \frac{y}{b}.</math></center>
Apollonius of Perga (1896)

„These seven stages we shall name as follows:
1. Mixture
2. Gestation
3. Expansion
4. Age of Conflict
5. Universal Empire
6. Decay
7. Invasion“

—  Carroll Quigley American historian 1910 - 1977

Quelle: The Evolution of Civilizations (1961) (Second Edition 1979), Chapter 5, Historical Change in Civilizations, p. 146

Paul Krugman Foto
David Eugene Smith Foto
David Eugene Smith Foto
Stephen R. Covey Foto
John Wallis Foto

„Suppose we a certain Number of things exposed, different each from other, as a, b, c, d, e, &c.; The question is, how many ways the order of these may be varied? as, for instance, how many changes may be Rung upon a certain Number of Bells; or, how many ways (by way of Anagram) a certain Number of (different) Letters may be differently ordered?
Alt.1,21) If the thing exposed be but One, as a, it is certain, that the order can be but one. That is 1.
2) If Two be exposed, as a, b, it is also manifest, that they may be taken in a double order, as ab, ba, and no more. That is 1 x 2 = 2. Alt.3
3) If Three be exposed; as a, b, c: Then, beginning with a, the other two b, c, may (by art. 2,) be disposed according to Two different orders, as bc, cb; whence arise Two Changes (or varieties of order) beginning with a as abc, acb: And, in like manner it may be shewed, that there be as many beginning with b; because the other two, a, c, may be so varied, as bac, bca. And again as many beginning with c as cab, cba. And therefore, in all, Three times Two. That is 1 x 2, x 3 = 6.
Alt.34) If Four be exposed as a, b, c, d; Then, beginning with a, the other Three may (by art. preceeding) be disposed six several ways. And (by the same reason) as many beginning with b, and as many beginning with c, and as many beginning with d. And therefore, in all, Four times six, or 24. That is, the Number answering to the case next foregoing, so many times taken as is the Number of things here exposed. That is 1 x 2 x 3, x 4 = 6 x 4 = 24.
5) And in like manner it may be shewed, that this Number 24 Multiplied by 5, that is 120 = 24 x 5 = 1 x 2 x 3 x 4 x 5, is the number of alternations (or changes of order) of Five things exposed. (Or, the Number of Changes on Five Bells.) For each of these five being put in the first place, the other four will (by art. preceeding) admit of 24 varieties, that is, in all, five times 24. And in like manner, this Number 120 Multiplied by 6, shews the Number of Alternations of 6 things exposed; and so onward, by continual Multiplication by the conse quent Numbers 7, 8, 9, &c.;
6) That is, how many so ever of Numbers, in their natural Consecution, beginning from 1, being continually Multiplied, give us the Number of Alternations (or Change of order) of which so many things are capable as is the last of the Numbers so Multiplied. As for instance, the Number of Changes in Ringing Five Bells, is 1 x 2 x 3 x 4 x 5 = 120. In Six Bells, 1 x 2 x 3 x 4 x 5 x 6 = 120 x 6 = 720. In Seven Bells, 720 x 7 = 5040. In Eight Bells, 5040 x 8 = 40320, And so onward, as far as we please.“

—  John Wallis English mathematician 1616 - 1703

Quelle: A Discourse of Combinations, Alterations, and Aliquot Parts (1685), Ch.II Of Alternations, or the different Change of Order, in any Number of Things proposed.

Natalie Goldberg Foto
Hans Reichenbach Foto

Ähnliche Themen