# Zitate von Diophantos von Alexandria

0   0

## Diophantos von Alexandria

Diophantos von Alexandria war ein antiker griechischer Mathematiker. Er gilt als der bedeutendste Algebraiker der Antike, er gilt sogar als einer der wesentlichen Begründer der Algebra und Zahlentheorie. Wie sein Namenszusatz andeutet lebte er in Alexandria.

### Ähnliche Autoren

##### Archimedes2
antiker griechischer Mathematiker, Physiker und Ingenieur
##### Demokrit15
griechischer Philosoph
##### Pindar8
griechischer Dichter
##### Sophokles45
klassischer griechischer Dichter
##### Thales von Milet13
Philosoph, Mathematiker, Astronom
##### Euripidés14
klassischer griechischer Dichter
##### Hesiod14
griechischer Dichter
##### Parmenides von Elea3
vorsokratischer Philosoph
##### Platón19
antiker griechischer Philosoph

### „Perhaps the topic [of this book] will appear fairly difficult to you because it is not yet familiar knowledge and the understanding of beginners is easily confused by mistakes; but with your inspiration and my teaching it will be easy for you to master, because clear intelligence supported by good lessons is a fast route to knowledge.“

—  Diophantus
Following the dedication to Dionysus as quoted by Paul Drijvers, Secondary Algebra Education (2011)

### „If we arrive at an equation containing on each side the same term but with different coefficients, we must take equals from equals until we get one term equal to another term. But, if there are on one or on both sides negative terms, the deficiencies must be added on both bides until all the terms on both sides are positive. Then we must take equals from equals until one term is left on each side.“

—  Diophantus
As quoted by Thomas Little Heath, Diophantos of Alexandria: https://books.google.com/books?id=ABkPAAAAIAAJ A Study in the History of Greek Algebra (1885)

### „As a square number is known to be the product of a number multiplied by itself, so every polygonal number, multiplied by one number and added to another, both of which depend upon the number of its angles, produces a square number. I shall prove this, and shall show also how from a given side to find its polygon and conversely. Some auxiliary propositions must first be proved.“

—  Diophantus
As quoted by James Gow, A Short History of Greek Mathematics https://books.google.com/books?id=9d8DAAAAMAAJ (1884)