Zitate von Alan Turing

Alan Turing Foto
2  0

Alan Turing

Geburtstag: 23. Juni 1912
Todesdatum: 7. Juni 1954
Andere Namen:एलन ट्यूरिंग,Алан Матисон Тьюринг

Werbung

Alan Mathison Turing OBE, FRS [ˈælən ˈmæθɪsən ˈtjʊəɹɪŋ] war ein britischer Logiker, Mathematiker, Kryptoanalytiker und Informatiker. Er gilt heute als einer der einflussreichsten Theoretiker der frühen Computerentwicklung und Informatik. Turing schuf einen großen Teil der theoretischen Grundlagen für die moderne Informations- und Computertechnologie. Als richtungsweisend erwiesen sich auch seine Beiträge zur theoretischen Biologie.

Das von ihm entwickelte Berechenbarkeitsmodell der Turingmaschine bildet eines der Fundamente der Theoretischen Informatik. Während des Zweiten Weltkrieges war er maßgeblich an der Entzifferung der mit der Enigma verschlüsselten deutschen Funksprüche beteiligt. Der Großteil seiner Arbeiten blieb auch nach Kriegsende unter Verschluss.

Turing entwickelte 1953 eines der ersten Schachprogramme, dessen Berechnungen er mangels Hardware selbst durchführte. Nach ihm benannt sind der Turing Award, die bedeutendste Auszeichnung in der Informatik, sowie der Turing-Test zum Überprüfen des Vorhandenseins von künstlicher Intelligenz.

Im März 1952 wurde Turing wegen seiner Homosexualität, die damals noch als Straftat verfolgt wurde, zur chemischen Kastration verurteilt. Turing erkrankte in Folge der Hormonbehandlung an einer Depression und beging etwa zwei Jahre später Suizid. Im Jahr 2009 sprach der damalige britische Premierminister Gordon Brown eine offizielle Entschuldigung im Namen der Regierung für die „entsetzliche Behandlung“ Turings aus und würdigte dessen „außerordentliche Verdienste“ während des Krieges; eine Begnadigung wurde aber noch 2011 trotz einer Petition abgelehnt. Zum 24. Dezember 2013 sprach Königin Elisabeth II. posthum ein „Royal Pardon“ aus.

Zitate Alan Turing

Werbung

„These questions replace our original, "Can machines think?"“

— Alan Turing
Context: "Can machines think?"... The new form of the problem can be described in terms of a game which we call the 'imitation game." It is played with three people, a man (A), a woman (B), and an interrogator (C) who may be of either sex. The interrogator stays in a room apart front the other two. The object of the game for the interrogator is to determine which of the other two is the man and which is the woman. He knows them by labels X and Y, and at the end of the game he says either "X is A and Y is B" or "X is B and Y is A." The interrogator is allowed to put questions to A and B... We now ask the question, "What will happen when a machine takes the part of A in this game?" Will the interrogator decide wrongly as often when the game is played like this as he does when the game is played between a man and a woman? These questions replace our original, "Can machines think?"

„Mathematical reasoning may be regarded rather schematically as the exercise of a combination of two facilities, which we may call intuition and ingenuity.“

— Alan Turing
Context: Mathematical reasoning may be regarded rather schematically as the exercise of a combination of two facilities, which we may call intuition and ingenuity. The activity of the intuition consists in making spontaneous judgements which are not the result of conscious trains of reasoning... The exercise of ingenuity in mathematics consists in aiding the intuition through suitable arrangements of propositions, and perhaps geometrical figures or drawings. "Systems of Logic Based on Ordinals," section 11: The purpose of ordinal logics (1938), published in Proceedings of the London Mathematical Society, series 2, vol. 45 (1939) In a footnote to the first sentence, Turing added: "We are leaving out of account that most important faculty which distinguishes topics of interest from others; in fact, we are regarding the function of the mathematician as simply to determine the truth or falsity of propositions."

„I am not very impressed with theological arguments whatever they may be used to support. Such arguments have often been found unsatisfactory in the past.“

— Alan Turing
Context: I am not very impressed with theological arguments whatever they may be used to support. Such arguments have often been found unsatisfactory in the past. In the time of Galileo it was argued that the texts, "And the sun stood still... and hasted not to go down about a whole day" (Joshua x. 13) and "He laid the foundations of the earth, that it should not move at any time" (Psalm cv. 5) were an adequate refutation of the Copernican theory. pp. 443-444.

Werbung

„The majority of them seem to be "sub-critical," i.e., to correspond in this analogy to piles of sub-critical size. An idea presented to such a mind will on average give rise to less than one idea in reply. A smallish proportion are super-critical. An idea presented to such a mind may give rise to a whole "theory" consisting of secondary, tertiary and more remote ideas.“

— Alan Turing
Context: Another simile would be an atomic pile of less than critical size: an injected idea is to correspond to a neutron entering the pile from without. Each such neutron will cause a certain disturbance which eventually dies away. If, however, the size of the pile is sufficiently increased, the disturbance caused by such an incoming neutron will very likely go on and on increasing until the whole pile is destroyed. Is there a corresponding phenomenon for minds, and is there one for machines? There does seem to be one for the human mind. The majority of them seem to be "sub-critical," i. e., to correspond in this analogy to piles of sub-critical size. An idea presented to such a mind will on average give rise to less than one idea in reply. A smallish proportion are super-critical. An idea presented to such a mind may give rise to a whole "theory" consisting of secondary, tertiary and more remote ideas. Animals minds seem to be very definitely sub-critical. Adhering to this analogy we ask, "Can a machine be made to be super-critical?" p. 454.

„The view that machines cannot give rise to surprises is due, I believe, to a fallacy to which philosophers and mathematicians are particularly subject. This is the assumption that as soon as a fact is presented to a mind all consequences of that fact spring into the mind simultaneously with it. It is a very useful assumption under many circumstances, but one too easily forgets that it is false.“

— Alan Turing
Context: The view that machines cannot give rise to surprises is due, I believe, to a fallacy to which philosophers and mathematicians are particularly subject. This is the assumption that as soon as a fact is presented to a mind all consequences of that fact spring into the mind simultaneously with it. It is a very useful assumption under many circumstances, but one too easily forgets that it is false. A natural consequence of doing so is that one then assumes that there is no virtue in the mere working out of consequences from data and general principles. p. 451.

Werbung
Nächster
Die heutige Jubiläen
Simone van der Vlugt Foto
Simone van der Vlugt
niederländische Autorin 1966
Kurt Weidemann5
deutscher Grafikdesigner, Typograf, Autor und Lehrer 1922 - 2011
Max René Hesse1
deutscher Arzt und Schriftsteller 1885 - 1952
Licio Gelli Foto
Licio Gelli
italienischer Faschist, Verschwörer und Freimaurer, Gründ... 1919 - 2015
Weitere 67 heute Jubiläen
Ähnliche Autoren
Alfred North Whitehead Foto
Alfred North Whitehead6
britischer Philosoph und Mathematiker
Ludwig Wittgenstein Foto
Ludwig Wittgenstein24
österreichisch-britischer Philosoph
 Archimedes Foto
Archimedes2
antiker griechischer Mathematiker, Physiker und Ingenieur
Thomas Hobbes Foto
Thomas Hobbes11
englischer Mathematiker, Staatstheoretiker und Philosoph
Aneurin Bevan Foto
Aneurin Bevan1
britischer Politiker
Sefton Delmer Foto
Sefton Delmer3
englischer Journalist
 Sting Foto
Sting17
englischer Musiker
Mick Jagger Foto
Mick Jagger1
britischer Musiker, Sänger der Rolling Stones
Edmund Burke Foto
Edmund Burke8
Schriftsteller, Staatsphilosoph und Politiker