„Parallel lines have a common end point at an infinite distance.“

Brouillion project (1639) as quoted by Harold Scott MacDonald Coxeter, Projective Geometry (1987)

Übernommen aus Wikiquote. Letzte Aktualisierung 3. Juni 2021. Geschichte
Gérard Desargues Foto
Gérard Desargues
französischer Mathematiker 1591 - 1661

Ähnliche Zitate

Girard Desargues Foto

„When no point of a line is at a finite distance, the line itself is at an infinite distance.“

—  Girard Desargues French mathematician and engineer 1591 - 1661

Brouillion project (1639) as quoted by Harold Scott MacDonald Coxeter, Projective Geometry (1987)

„A straight line is not the shortest distance between two points.“

—  Madeleine L'Engle American writer 1918 - 2007

Quelle: A Wrinkle in Time: With Related Readings

Will Durant Foto

„In philosophy, as in politics, the longest distance between two points is a straight line.“

—  Will Durant American historian, philosopher and writer 1885 - 1981

Quelle: The Story of Philosophy: The Lives and Opinions of the World's Greatest Philosophers

Theodor W. Adorno Foto

„The straight line is regarded as the shortest distance between two people, as if they were points.“

—  Theodor W. Adorno, buch Minima Moralia

Nun gilt für die kürzeste Verbindung zwischen zwei Personen die Gerade, so als ob sie Punkte wären.
E. Jephcott, trans. (1974), § 20
Minima Moralia (1951)

Richard Francis Burton Foto

„The Now, that indivisible point which studs the length of infinite line
Whose ends are nowhere, is thine all, the puny all thou callest thine.“

—  Richard Francis Burton British explorer, geographer, translator, writer, soldier, orientalist, cartographer, ethnologist, spy, linguist, poet,… 1821 - 1890

The Kasîdah of Hâjî Abdû El-Yezdî (1870)
Kontext: And hold Humanity one man, whose universal agony
Still strains and strives to gain the goal, where agonies shall cease to be.
Believe in all things; none believe; judge not nor warp by "Facts" the thought;
See clear, hear clear, tho' life may seem Mâyâ and Mirage, Dream and Naught.
Abjure the Why and seek the How: the God and gods enthroned on high,
Are silent all, are silent still; nor hear thy voice, nor deign reply.
The Now, that indivisible point which studs the length of infinite line
Whose ends are nowhere, is thine all, the puny all thou callest thine.

Andrew Marvell Foto
Heinrich Wilhelm Matthäus Olbers Foto

„Should there really be suns in the whole infinite space, they can be at approximately the same distance from one another, or distributed over galaxies, hence would be in infinite quantities, and consequently the whole sky should be as bright as the sun. Clearly, each line which can conceivably be drawn from our eye will necessarily end on one of the stars and each point on the sky would send us starlight, that is, sunlight.“

—  Heinrich Wilhelm Matthäus Olbers German physician and astronomer 1758 - 1840

Sind wirklich im ganzen unendlichen Raum Sonnen vorhanden, sie mögen nun in ungefähr gleichen Abständen von einander, oder in Milchstrassen-Systeme vertheilt sein, so wird ihre Menge unendlich, und da müsste der ganze Himmel ebenso hell sein, wie die Sonne. Denn jede Linie, die ich mir von unserm Auge gezogen denken kann, wird nothwendig auf irgend einen Fixstern treffen, und also müßte uns jeder Punkt am Himmel Fixsternlicht, also Sonnenlicht zusenden.
Olbers' paradox, expressed in [Ueber die Durchsichtigkeit des Weltraums, Astronomisches Jahrbuch für das Jahr 1826, J. Bode. Berlin, Späthen 1823, 110-121]

Milan Kundera Foto

„Our lives may be separate, but they run in the same direction, like parallel lines.“

—  Milan Kundera, buch Die unerträgliche Leichtigkeit des Seins

Quelle: The Unbearable Lightness of Being

Helen Thomas Foto
G. I. Gurdjieff Foto
Alfred Noyes Foto
Thomas Mann Foto

„Following straight lines shortens distances, and also life.“

—  Antonio Porchia Italian Argentinian poet 1885 - 1968

El ir derecho acorta las distancias, y también la vida.
Voces (1943)

Joseph Silk Foto
Anne Louise Germaine de Staël Foto

„Closely related to the problem of the parallel postulate is the problem of whether physical space is infinite. Euclid assumes“

—  Morris Kline American mathematician 1908 - 1992

Quelle: Mathematical Thought from Ancient to Modern Times (1972), p. 177
Kontext: Closely related to the problem of the parallel postulate is the problem of whether physical space is infinite. Euclid assumes in Postulate 2 that a straight-line segment can be extended as far as necessary; he uses this fact, but only to find a larger finite length—for example in Book I, Propositions 11, 16, and 20. For these proofs Heron gave new proofs that avoided extending the lines, in order to meet the objection of anyone who would deny that the space was available for the extension.

Ähnliche Themen