Zitate von Richard Feynman

Richard Feynman Foto
4   0

Richard Feynman

Geburtstag: 11. Mai 1918
Todesdatum: 15. Februar 1988
Andere Namen: Richard Feynman Philips, Richard Phillips Feynman, Ричард Филлипс Фейнман

Richard Phillips Feynman [ˈfaɪnmən] war ein US-amerikanischer Physiker und Nobelpreisträger des Jahres 1965.

Feynman gilt als einer der großen Physiker des 20. Jahrhunderts, der wesentliche Beiträge zum Verständnis der Quantenfeldtheorien geliefert hat. Zusammen mit Shin’ichirō Tomonaga und Julian Schwinger erhielt er 1965 den Nobelpreis für seine Arbeit zur Quantenelektrodynamik . Seine anschauliche Darstellung quantenfeldtheoretischer elementarer Wechselwirkungen durch Feynman-Diagramme ist heute ein De-facto-Standard.Für Feynman war es immer wichtig, die unanschaulichen Gesetzmäßigkeiten der Quantenphysik Laien und Studenten nahezubringen und verständlich zu machen. An Universitäten ist seine Vorlesungsreihe weit verbreitet. In Büchern wie QED: Die seltsame Theorie des Lichts und der Materie und Character of Physical Law wandte er sich an ein breiteres Publikum. Sein Charisma und die Fähigkeit, auf seine Zuhörerschaft einzugehen, ließen seine Vorlesungen und Vorträge legendär werden.

Seine unkonventionelle und nonkonformistische Art zeigte sich auch in seinen autobiographisch geprägten Büchern wie Sie belieben wohl zu scherzen, Mr. Feynman. Abenteuer eines neugierigen Physikers und Kümmert Sie, was andere Leute denken? In einem gleichnamigen Essay prägte er den Begriff der „Cargo-Kult-Wissenschaft“ für eine wissenschaftliche Disziplin, welche zwar der Form genügt, aber den Ansprüchen an den Inhalt nicht gerecht wird. Da der Begriff Cargo-Kult ursprünglich ein Verhaltensmuster von Ureinwohnern im Südpazifik beschrieb, zeigte dessen Verwendung in Bezug auf die Wissenschaft eine gewisse feinsinnige Respektlosigkeit. Wikipedia

Zitate Richard Feynman

„Der Trick sind die Idealisierungen. […] Dieses System ähnelt keineswegs dem der Mathematik, in welcher jedes Ding definiert werden kann, und dann wissen wir nicht, wovon wir reden. In der Tat ist es das Herrliche an der Mathematik, dass wir nicht sagen müssen, wovon wir reden. Das Herrliche liegt darin, dass die Gesetze, die Argumente und die Logik unabhängig davon sind, was "es" ist.“

—  Richard Feynman

Vorlesungen über Physik, Band I, Kap. 12.1 (Übersetzung: Heinz Köhler), Seite 165, Oldenbourg München Wien, 5. Aufl. 2007
Original englisch: "The trick is the idealizations. [...] This system is quite unlike the case of mathematics, in which everything can be defined, and then we do not know what we are talking about. In fact, the glory of mathematics is that we do not have to say what we are talking about. The glory is that the laws, the arguments, and the logic are independent of what 'it' is." - The Feynman Lectures on Physics: Quantum Mechanics. Addison-Wesley Pub. Co., 1965.

„Ein Philosoph hat einmal behaupet: 'Naturwissenschaft setzt notwendig voraus, dass gleiche Umstände immer auch gleiche Auswirkungen haben.' Nun, dem ist nicht so.“

—  Richard Feynman

Zitiert in Tony Hey und Patrick Walters: Das Quantenuniversum, Spektrum, Heidelberg 1990, ISBN 3-8274-0315-4 Kapitel 2 "Heisenberg und die quantenmechanische Unbestimmtheit" "Seite 33.
Original engl.: "A philosopher once said: 'It is necessary for the very existence of science that the same conditions always produce the same results'. Well, they do not." - The Character of Physical Law. A series of lectures recorded by the BBC at Cornell University. BBC 1965. Neuauflage Modern Library 1994

„[Energie]"Es ist wichtig, einzusehen, dass wir in der heutigen Physik nicht wissen, was Energie ist. Wir haben kein Bild davon, dass Energie in kleinen Klumpen definierter Größe vorkommt."“

—  Richard Feynman

Vorlesungen über Physik, Band I, Kap. 4.1 (Übersetzung: Heinz Köhler), Seite 46, Oldenbourg München Wien, 5. Aufl. 2007
Original engl.: "It is important to realize that in physics today, we have no knowledge of what energy is. We do not have a picture that energy comes in little blobs of a definite amount."

„Mir würde es gar nicht gefallen, zweimal zu sterben. Es ist so langweilig.“

—  Richard Feynman

Letzte Worte, 15. Februar 1988 - zu seiner Ehefrau, seiner Schwester und seiner Cousine, als er kurz aus einem durch Nierenversagen verursachten Koma erwachte.

„We can deduce, often, from one part of physics like the law of gravitation, a principle which turns out to be much more valid than the derivation.“

—  Richard Feynman, buch The Character of Physical Law

Quelle: The Character of Physical Law (1965), chapter 2, “ The Relation of Mathematics to Physics http://www.youtube.com/watch?v=M9ZYEb0Vf8U” referring to the law of conservation of angular momentum
Kontext: Now we have a problem. We can deduce, often, from one part of physics like the law of gravitation, a principle which turns out to be much more valid than the derivation. This doesn't happen in mathematics, that the theorems come out in places where they're not supposed to be!

„We are not to tell nature what she’s gotta be. … She's always got better imagination than we have.“

—  Richard Feynman

Sir Douglas Robb Lectures, University of Auckland (1979); lecture 1, "Photons: Corpuscles of Light" http://www.youtube.com/watch?v=eLQ2atfqk2c&t=48m01s

„The real problem in speech is not precise language. The problem is clear language.“

—  Richard Feynman

" New Textbooks for the "New" Mathematics http://calteches.library.caltech.edu/2362/1/feynman.pdf", Engineering and Science volume 28, number 6 (March 1965) p. 9-15 at p. 14
Paraphrased as "Precise language is not the problem. Clear language is the problem."
Kontext: The real problem in speech is not precise language. The problem is clear language. The desire is to have the idea clearly communicated to the other person. It is only necessary to be precise when there is some doubt as to the meaning of a phrase, and then the precision should be put in the place where the doubt exists. It is really quite impossible to say anything with absolute precision, unless that thing is so abstracted from the real world as to not represent any real thing.Pure mathematics is just such an abstraction from the real world, and pure mathematics does have a special precise language for dealing with its own special and technical subjects. But this precise language is not precise in any sense if you deal with real objects of the world, and it is only pedantic and quite confusing to use it unless there are some special subtleties which have to be carefully distinguished.

„It is really quite impossible to say anything with absolute precision, unless that thing is so abstracted from the real world as to not represent any real thing.“

—  Richard Feynman

" New Textbooks for the "New" Mathematics http://calteches.library.caltech.edu/2362/1/feynman.pdf", Engineering and Science volume 28, number 6 (March 1965) p. 9-15 at p. 14
Paraphrased as "Precise language is not the problem. Clear language is the problem."
Kontext: The real problem in speech is not precise language. The problem is clear language. The desire is to have the idea clearly communicated to the other person. It is only necessary to be precise when there is some doubt as to the meaning of a phrase, and then the precision should be put in the place where the doubt exists. It is really quite impossible to say anything with absolute precision, unless that thing is so abstracted from the real world as to not represent any real thing.Pure mathematics is just such an abstraction from the real world, and pure mathematics does have a special precise language for dealing with its own special and technical subjects. But this precise language is not precise in any sense if you deal with real objects of the world, and it is only pedantic and quite confusing to use it unless there are some special subtleties which have to be carefully distinguished.

„Einstein was a giant. His head was in the clouds, but his feet were on the ground. But those of us who are not that tall have to choose!“

—  Richard Feynman

recalled by Carver Mead in Collective Electrodynamics: Quantum Foundations of Electromagnetism (2002), p. xix

„God was always invented to explain mystery. God is always invented to explain those things that you do not understand.“

—  Richard Feynman

interview published in Superstrings: A Theory of Everything? (1988) edited by Paul C. W. Davies and Julian R. Brown, p. 208-209
Kontext: God was always invented to explain mystery. God is always invented to explain those things that you do not understand. Now, when you finally discover how something works, you get some laws which you're taking away from God; you don't need him anymore. But you need him for the other mysteries. So therefore you leave him to create the universe because we haven't figured that out yet; you need him for understanding those things which you don't believe the laws will explain, such as consciousness, or why you only live to a certain length of time — life and death — stuff like that. God is always associated with those things that you do not understand. Therefore I don't think that the laws can be considered to be like God because they have been figured out.

„The old problems, such as the relation of science and religion, are still with us, and I believe present as difficult dilemmas as ever, but they are not often publicly discussed because of the limitations of specialization.“

—  Richard Feynman

remarks (2 May 1956) at a Caltech YMCA lunch forum http://calteches.library.caltech.edu/49/2/Religion.htm
Kontext: In this age of specialization men who thoroughly know one field are often incompetent to discuss another. The great problems of the relations between one and another aspect of human activity have for this reason been discussed less and less in public. When we look at the past great debates on these subjects we feel jealous of those times, for we should have liked the excitement of such argument. The old problems, such as the relation of science and religion, are still with us, and I believe present as difficult dilemmas as ever, but they are not often publicly discussed because of the limitations of specialization.

„I have a limited intelligence and I've used it in a particular direction.“

—  Richard Feynman, buch The Pleasure of Finding Things Out

" The Pleasure of Finding Things Out http://www.worldcat.org/wcpa/servlet/DCARead?standardNo=0738201081&standardNoType=1&excerpt=true", p. 2-3, transcript of BBC TV Horizon interview (1981): video http://www.youtube.com/watch?v=NEwUwWh5Xs4&t=2m53s
The Pleasure of Finding Things Out (1999)
Kontext: I've always been rather very one-sided about the science, and when I was younger, I concentrated almost all my effort on it. I didn't have time to learn, and I didn't have much patience for what's called the humanities; even though in the university there were humanities that you had to take, I tried my best to avoid somehow to learn anything and to work on it. It's only afterwards, when I've gotten older and more relaxed that I've spread out a little bit — I've learned to draw, and I read a little bit, but I'm really still a very one-sided person and don't know a great deal. I have a limited intelligence and I've used it in a particular direction.

„What I cannot create, I do not understand.Know how to solve every problem that has been solved.“

—  Richard Feynman

on his blackboard at the time of death in February 1988; from a photo in the Caltech archives http://archives.caltech.edu/pictures/1.10-29.jpg

„I learned very early the difference between knowing the name of something and knowing something.“

—  Richard Feynman, buch What Do You Care What Other People Think?

"The Making of a Scientist," p. 14 <!-- Feynman used variants of this bird story repeatedly: (1) "What is Science?", presented at the fifteenth annual meeting of the National Science Teachers Association, in New York City (1966) published in The Physics Teacher, volume 7, issue 6 (1969), p. 313-320. (2) Interview for the BBC TV Horizon program "The Pleasure of Finding Things Out" (1981), published in Christopher Sykes, No Ordinary Genius: The Illustrated Richard Feynman (1994), p. 27. -->
What Do You Care What Other People Think? (1988)
Kontext: You can know the name of that bird in all the languages of the world, but when you're finished, you'll know absolutely nothing whatever about the bird. You'll only know about humans in different places, and what they call the bird. … I learned very early the difference between knowing the name of something and knowing something.

„Our freedom to doubt was born out of a struggle against authority in the early days of science. It was a very deep and strong struggle: permit us to question — to doubt — to not be sure. I think that it is important that we do not forget this struggle and thus perhaps lose what we have gained.“

—  Richard Feynman

The Value of Science (1955)
Kontext: The scientist has a lot of experience with ignorance and doubt and uncertainty, and this experience is of very great importance, I think. When a scientist doesn’t know the answer to a problem, he is ignorant. When he has a hunch as to what the result is, he is uncertain. And when he is pretty darn sure of what the result is going to be, he is still in some doubt. We have found it of paramount importance that in order to progress we must recognize our ignorance and leave room for doubt. Scientific knowledge is a body of statements of varying degrees of certainty — some most unsure, some nearly sure, but none absolutely certain. Now, we scientists are used to this, and we take it for granted that it is perfectly consistent to be unsure, that it is possible to live and not know. But I don’t know whether everyone realizes this is true. Our freedom to doubt was born out of a struggle against authority in the early days of science. It was a very deep and strong struggle: permit us to question — to doubt — to not be sure. I think that it is important that we do not forget this struggle and thus perhaps lose what we have gained.

„It is not unscientific to make a guess, although many people who are not in science think it is.“

—  Richard Feynman, buch The Character of Physical Law

Quelle: The Character of Physical Law (1965), chapter 7, “Seeking New Laws,” p. 165-166: video http://www.youtube.com/watch?v=-2NnquxdWFk&t=37m21s
Kontext: It is not unscientific to make a guess, although many people who are not in science think it is. Some years ago I had a conversation with a layman about flying saucers — because I am scientific I know all about flying saucers! I said “I don’t think there are flying saucers”. So my antagonist said, “Is it impossible that there are flying saucers? Can you prove that it’s impossible?” “No”, I said, “I can’t prove it’s impossible. It’s just very unlikely”. At that he said, “You are very unscientific. If you can’t prove it impossible then how can you say that it’s unlikely?” But that is the way that is scientific. It is scientific only to say what is more likely and what less likely, and not to be proving all the time the possible and impossible. To define what I mean, I might have said to him, "Listen, I mean that from my knowledge of the world that I see around me, I think that it is much more likely that the reports of flying saucers are the results of the known irrational characteristics of terrestrial intelligence than of the unknown rational efforts of extra-terrestrial intelligence." It is just more likely. That is all.

„It is important to realize that in physics today, we have no knowledge what energy is.“

—  Richard Feynman

volume I; lecture 4, "Conservation of Energy"; section 4-1, "What is energy?"; p. 4-2
The Feynman Lectures on Physics (1964)
Kontext: It is important to realize that in physics today, we have no knowledge what energy is. We do not have a picture that energy comes in little blobs of a definite amount. It is not that way.

„Have no respect whatsoever for authority; forget who said it and instead look what he starts with, where he ends up, and ask yourself, "Is it reasonable?"“

—  Richard Feynman, buch What Do You Care What Other People Think?

"What Do You Care What Other People Think?", p. 28-29
What Do You Care What Other People Think? (1988)
Kontext: Doubting the great Descartes … was a reaction I learned from my father: Have no respect whatsoever for authority; forget who said it and instead look what he starts with, where he ends up, and ask yourself, "Is it reasonable?"

Ähnliche Autoren

Wolfgang Pauli Foto
Wolfgang Pauli5
österreichischer Physiker und Nobelpreisträger
Werner Heisenberg Foto
Werner Heisenberg10
deutscher Physiker und Nobelpreisträger
Max Born Foto
Max Born3
deutscher Mathematiker und Physiker, Nobelpreisträger für P…
Niels Bohr Foto
Niels Bohr5
dänischer Physiker des 20. Jahrhunderts
Max Planck Foto
Max Planck13
deutscher Physiker
Albert Einstein Foto
Albert Einstein167
theoretischer Physiker
Stephen Hawking Foto
Stephen Hawking95
britischer theoretischer Physiker
Erwin Schrödinger Foto
Erwin Schrödinger7
österreichischer Physiker und Wissenschaftstheoretiker
Milton Friedman Foto
Milton Friedman6
US-amerikanischer Wirtschaftswissenschaftler und Nobelpreis…
Nikola Tesla Foto
Nikola Tesla46
Erfinder und Physiker
Heutige Jubiläen
Malcolm X Foto
Malcolm X77
US-amerikanischer Führer der Bürgerrechtsbewegung 1925 - 1965
Johann Gottlieb Fichte Foto
Johann Gottlieb Fichte14
deutscher Philosoph 1762 - 1814
Peter Zadek Foto
Peter Zadek4
deutscher Regisseur 1926 - 2009
Rahel Varnhagen von Ense Foto
Rahel Varnhagen von Ense3
deutsche Schriftstellerin 1771 - 1833
Weitere 65 heutige Jubiläen
Ähnliche Autoren
Wolfgang Pauli Foto
Wolfgang Pauli5
österreichischer Physiker und Nobelpreisträger
Werner Heisenberg Foto
Werner Heisenberg10
deutscher Physiker und Nobelpreisträger
Max Born Foto
Max Born3
deutscher Mathematiker und Physiker, Nobelpreisträger für P…
Niels Bohr Foto
Niels Bohr5
dänischer Physiker des 20. Jahrhunderts
Max Planck Foto
Max Planck13
deutscher Physiker